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Abstract—The emergence of compressed sensing (CS) theory
has enabled the development of single-pixel cameras that achieve
high-resolution imaging using a single photodetector. However,
traditional CS reconstruction algorithms require significant com-
putational time and face an inherent trade-off between imaging
resolution and frame rate, limiting current single-pixel cameras
to static scene imaging. A key challenge lies in achieving real-
time single-pixel imaging with both high frame rate and high
resolution. This paper proposes a real-time single-pixel imaging
technology based on deep learning. We design a deep convolu-
tional neural network architecture incorporating residual net-
works to simulate the measurement and reconstruction process
of CS-based single-pixel imaging. The network is trained on an
image dataset and subsequently deployed for single-pixel imaging.
The trained network can complete image reconstruction at a low
sampling rate with minimal latency, enabling real-time single-
pixel video capture at 128×128 resolution with 33 frames per
second (fps) at a 4% sampling rate. Furthermore, we implement
a four-channel parallel signal processing method to achieve real-
time single-pixel imaging video at 256×256 resolution at 33 fps.

Index Terms—Compressed sensing, Real-time single-pixel
imaging, Deep learning

I. INTRODUCTION

Compressed sensing (CS) theory, introduced by Donoho
[1] and Candès [2] in 2006, revolutionized signal processing
by enabling signal reconstruction from significantly fewer
measurements than traditional Nyquist sampling requires. This
breakthrough has particular significance for imaging applica-
tions, where it enables high-resolution image capture using
limited measurements. The development of the single-pixel
camera at Rice University [7] demonstrated the practical po-
tential of CS theory, achieving high-resolution imaging using
just one photodetector.

Despite these advances, current single-pixel imaging sys-
tems face significant challenges in real-time applications.
Traditional CS reconstruction algorithms require substantial
computational resources [8], [9], creating an inherent trade-off
between imaging resolution and frame rate. This limitation has
largely confined single-pixel cameras to static scene imaging,
making real-time video capture particularly challenging.

Our paper presents a novel solution to this challenge through
the integration of deep learning with single-pixel imaging tech-
nology. We introduce a custom-designed deep convolutional
neural network architecture that enables real-time single-pixel
video capture while maintaining high resolution and frame

rates. Furthermore, we implement an innovative four-channel
parallel processing method to enhance system performance.

This paper is organized as follows: Section II provides
the theoretical background and recent developments in the
field. Section III details our proposed network architecture
and four-channel processing methodology. Section IV presents
experimental results and analysis, and Section V concludes
with our findings and future directions.

II. LITERATURE REVIEW

The convergence of deep learning and computational imag-
ing has catalyzed significant advancements in imaging tech-
nology over the past decade. This synthesis has proven par-
ticularly transformative in addressing fundamental challenges
in image acquisition and processing. Recent developments
in neural network architectures have enabled breakthrough
achievements in various imaging applications, from lensless
computational imaging systems [10] to sophisticated non-line-
of-sight reconstruction techniques [11]. Notably, researchers
have demonstrated remarkable progress in ghost imaging [12],
where deep learning approaches have substantially improved
both image quality and reconstruction speed.

In the medical imaging domain, the integration of deep
learning has revolutionized traditional imaging paradigms.
Researchers have achieved significant improvements in both
image quality and processing efficiency [5], [13], particularly
in applications requiring real-time processing of complex
imaging data. These advances have demonstrated the potential
of neural networks to overcome traditional limitations in com-
putational imaging, providing new pathways for addressing
long-standing challenges in the field.

The application of deep learning to compressed sensing
has emerged as a particularly promising direction for advanc-
ing imaging technology. Recent studies have demonstrated
impressive results across diverse domains, including radar
systems [3], medical diagnostics [5], and modern communi-
cation technologies [6]. These implementations have shown
that deep learning can significantly reduce the computational
overhead traditionally associated with compressed sensing
reconstruction, while maintaining or even improving recon-
struction quality.

Traditional compressed sensing approaches, while theoreti-
cally sound, have faced significant practical limitations in real-
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time applications. These challenges are particularly evident in
single-pixel imaging, where the trade-off between resolution
and frame rate has been a persistent constraint. The work
of Chen et al. [18] and Wei et al. [19] has highlighted
these limitations, demonstrating that conventional reconstruc-
tion methods struggle to meet the demands of real-time,
high-resolution imaging applications. Block-based compressed
sensing approaches [20] have offered partial solutions to
these challenges, providing improved computational efficiency
through structured sampling and reconstruction techniques.

Recent innovations in deep residual learning architectures
[21], [22] have opened new possibilities for addressing these
limitations. Residual networks have demonstrated exceptional
capability in learning complex image features and reconstruc-
tion patterns, making them particularly well-suited for single-
pixel imaging applications. These architectures offer improved
training stability and enhanced performance compared to tra-
ditional neural network designs, providing a robust foundation
for real-time image reconstruction systems.

The synthesis of these various technological streams –
deep learning, compressed sensing, and parallel processing
– presents exciting opportunities for advancing single-pixel
imaging technology. Our work builds upon these foundations
while introducing novel architectural elements and processing
strategies. By combining advanced neural network designs
with innovative parallel processing techniques, we address the
fundamental challenges of achieving both high frame rates and
high resolution in real-time single-pixel imaging applications.
This approach not only overcomes traditional performance
limitations but also establishes a new paradigm for real-time
computational imaging systems.

III. FORMULATION

The signal measurement and reconstruction process based
on Compressed Sensing can be mathematically expressed as:

y = Φx (1)

where x ∈ Rn represents the original signal, Φ ∈ Rm×n

denotes the measurement matrix, and y ∈ Rm is the measure-
ment vector, with m ≪ n. This system is underdetermined
[14]–[16]. Signal reconstruction involves recovering x from
y through CS-based reconstruction algorithms, which requires
specific theoretical conditions to be satisfied [17], [18].

We have implemented a single-pixel imaging system based
on CS measurement and reconstruction theory, as illustrated in
Fig. 1. The system employs a Digital Mirror Device (DMD,
ViAlUX V-7001) to express the sampling sequences of the
measurement matrix. Operating in 1-bit mode (0-1 binary), the
DMD achieves a maximum switching rate of 22,727 Hz. To
optimize DMD encoding efficiency, we utilize a 0-1 binary
measurement matrix. Signal detection is performed using a
Silicon PhotoMultiplier (SPM, Hamamatsu C13369), with
analog-to-digital conversion operating at a 50MHz sampling
frequency. Scene reconstruction is subsequently performed
computationally from the digitized data. To enhance structural

Fig. 1. Schematic diagram of the single-pixel imaging.

Fig. 2. Schematic diagram of the bilateral projection.

Fig. 3. The block diagonal measurement matrix.

balance and minimize artifacts in the imaging results, we
implement bilateral projection [19], as depicted in Fig. 2. This
approach leads to an updated expression of equation (1):

y =

[
Φ
−Φ

]
x (2)

While the bilateral projection method potentially increases
computational complexity in image reconstruction, we miti-
gate this effect by implementing a block diagonal measurement
matrix [20], as shown in Fig. 3. This optimization helps main-
tain computational efficiency while preserving reconstruction
quality.

IV. THE PROPOSED METHODS

A. Network Architecture

We present a novel deep convolutional neural network ar-
chitecture for real-time single-pixel imaging. Our design incor-
porates the residual network approach [21], which facilitates
the training of deeper network architectures through improved

https://www.ijetaa.com/article/view/130/ 2.
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Fig. 4. The flowchart of our network

Fig. 5. The improved residual block network

optimization capabilities. The residual network’s distinctive
feature lies in its skip connections, which effectively address
the gradient vanishing problem that typically emerges in deep
neural networks with increasing layers.

Our network architecture employs a residual network-style
backbone for feature extraction, complemented by pixel shuffle
[22] for feature upsampling. Fig. 4 illustrates the flowchart of
our network architecture. The Feature Extractor component
incorporates an improved residual block, shown in Fig. 5,
which comprises three distinct convolution operations and
includes a learnable parameter α.

Compared to the original residual network structure [21], we
have deliberately removed the batch normalization layers from
the residual block. This modification stems from our observa-
tion that single-pixel image reconstruction primarily focuses
on recovering image details and textures, without requiring
significant correlations between input images. Additionally,
batch normalization layers consume substantial GPU memory.
By eliminating these layers, we achieve significantly reduced
memory requirements, enabling the construction of larger and
more sophisticated network models within limited compu-
tational resources. This enhancement theoretically improves
performance for single-pixel imaging reconstruction.

Our network implements a large number of filters, gener-
ating numerous feature maps. However, we recognized that
increasing feature parameters beyond certain thresholds could
potentially destabilize the network training process. To address
this challenge, we introduced residual scaling with a factor α
to maintain training stability. The scaling layer is positioned
after the final convolution layer, as depicted in Fig. 5. We
initialize α at 0.1 and treat it as one of many learnable
parameters that adaptively adjust during network training.

Fig. 6. The schematic diagram of single-channel and four channels of SPM.

B. Training the Network

Our single-pixel imaging system operates at a resolution
of 256×256. We train the network at a 4% sampling rate,
resulting in 2704 (52×52) samples per imaging scene. To
facilitate network training across large datasets, we employ
a fixed measurement matrix following the structure shown in
Fig. 3, with a constant distribution of 0 and 1 elements.

The network implementation utilizes four GTX 1080Ti
GPUs and is developed using PyTorch [23]. We selected the
DIV2K dataset [24] for training, which contains 900 2K-
resolution images particularly well-suited for image super-
resolution reconstruction in our single-pixel camera appli-
cation. The network undergoes training for 960 epochs on
DIV2K. We implement data augmentation through random
crop, mirror, and flip operations. The crop size is set to
256×256, establishing the label image size for our network,
with a corresponding input size of 2704 (52×52) at the 4%
sampling rate. Prior to network input, we subtract 128 from
all pixel values.

Experimental evidence has demonstrated that the L1 loss
function outperforms L2 loss in terms of PSNR and SSIM
metrics for network training in image reconstruction qual-
ity [25]. Therefore, we implement L1 loss as our objective
function and employ stochastic gradient descent optimization
with momentum=0.9 and weight decay=1e-4. The learning rate
initiates at 1e-4 and halves every 160 epochs.

C. Four Channel Signal Processing of SPI

Our single-pixel imaging system incorporates an SPM fea-
turing a 4×4 photodetector array, as illustrated in Fig. 6. To
enhance real-time video imaging frame rates, we utilize the
central 2×2 four detection units (Channels) for 256×256 reso-
lution real-time imaging, with each detection unit responsible
for 128×128 single-pixel imaging. We implement four-channel
parallel analog-to-digital conversion to process the detection
signals simultaneously, as shown in Fig. 7, achieving a frame
rate four times higher than single-channel processing.

V. EXPERIMENTS ANALYSIS AND DISCUSSION

In this section, we evaluate our proposed methods through
implementation in our single-pixel camera system for real-
time video imaging experiments. Our deep learning approach
demonstrates a significant advancement in processing effi-
ciency. While the initial network training requires consider-
able computational time, the subsequent image reconstruction
using the trained network is remarkably fast, requiring only

https://www.ijetaa.com/article/view/130/ 3.
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Fig. 7. Four-channels parallel analog-to-digital converter.

1 2 3

4 5 6

7 8 9
Fig. 8. Single-channel, real-time 256×256 single-pixel imaging video (1 to
9 frames).

approximately 19 ms for 256×256 resolution images and 9 ms
for 128×128 resolution images—latencies that are practically
negligible in real-time applications.

The frame rate of our real-time single-pixel imaging sys-
tem is primarily constrained by the DMD modulation time.
Operating at a 4% sampling rate with the DMD’s maximum
switching rate of 22,727 Hz, our system achieves real-time
single-pixel video imaging at 33 fps for 128×128 resolution
and 8 fps for 256×256 resolution using a single channel. The
experimental results are presented in Fig. 8.

Further enhancement is achieved through our four-channel
parallel processing method, which enables 256×256 resolution
imaging at 33 fps. The corresponding video frames are shown
in Fig. 9. Analysis of the experimental results reveals several

1 2 3

4 5 6

7 8 9
Fig. 9. Four channels, real-time 256×256 single-pixel imaging video (1 to 9
frames)

key findings. The single-channel video capture of distant build-
ings and trees, obtained by rotating the single-pixel camera,
demonstrates clear visualization of detailed features such as
building windows. However, we observed two technical chal-
lenges in the single-channel implementation: dynamic noise
induced by camera movement and moderately leaning vertical
contour lines in each frame. These artifacts arise from frame
rate limitations and video data stream reading delays during
real-time dynamic imaging.

The four-channel implementation addresses these limita-
tions effectively. Compared to single-channel video imaging,
the increased frame rate and enhanced signal processing speed
per channel yield several improvements:

• Reduced leaning of vertical contour lines in video frames
• Minimized video data stream reading delays
• Expanded imaging field of view
• Enhanced balance in reconstructed frame images
• Improved video stream smoothness

Additionally, distributing imaging signals of the same reso-
lution across four independent channels for processing results
in lower visual noise compared to single-channel imaging.
However, one trade-off emerges: because images are recon-
structed separately and in parallel across the four imaging
channels, the final results exhibit some cross mark artifacts.

These experimental results validate the effectiveness of our
proposed deep learning approach for real-time single-pixel
imaging while highlighting areas for potential future opti-
mization. The demonstrated improvements in frame rate and
resolution through four-channel parallel processing represent
a significant advancement in single-pixel imaging technology.

https://www.ijetaa.com/article/view/130/ 4.
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VI. CONCLUSION

This paper presents a significant advancement in real-
time single-pixel video imaging through the application of
deep learning techniques. Our research demonstrates that deep
learning-based approaches can effectively overcome traditional
limitations in single-pixel imaging, particularly regarding the
trade-off between resolution and frame rate. The implemen-
tation of four-channel parallel signal processing represents a
novel solution for achieving higher resolution and frame rates
in single-pixel imaging systems.

Our experimental results validate that the proposed method-
ology successfully achieves real-time single-pixel video imag-
ing with 256×256 resolution at 33 frames per second, a notable
improvement over existing systems. The parallel processing
architecture not only enhances the frame rate but also improves
overall image quality by reducing artifacts and noise typically
associated with single-channel implementations.

The integration of deep learning with single-pixel imaging
opens new possibilities for applications requiring high-speed,
high-resolution imaging in challenging environments. Our
approach demonstrates that neural networks can effectively
learn and optimize the complex relationships between com-
pressed measurements and reconstructed images, providing a
more efficient alternative to traditional compressed sensing
reconstruction algorithms.

This research establishes a foundation for future develop-
ments in single-pixel imaging technology. The parallel pro-
cessing method described here may inspire further exploration
of multi-channel architectures and alternative neural network
designs for enhanced imaging performance. Future research
directions could focus on optimizing network architectures
for specific applications, reducing computational requirements,
and developing more sophisticated parallel processing schemes
to further improve image quality and frame rates.

The success of this approach suggests that similar principles
could be applied to other computational imaging systems
where real-time performance is crucial. As deep learning tech-
niques continue to evolve, we anticipate further improvements
in both the efficiency and capability of single-pixel imaging
systems.
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