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Abstract—With the rapid development of artificial intelligence
technology, deepfake technology has made significant advance-
ments in recent years, achieving unprecedented levels of visual
realism and voice mimicry in generated fake content. The misuse
of this technology poses serious threats to social security, personal
privacy, and information authenticity. This paper systematically
reviews the latest research progress in deepfake detection technol-
ogy, covering traditional methods to modern detection techniques
based on deep learning. We first introduce the basic principles
and classification of deepfake technology, then analyze in detail
major technical approaches including physical feature detection,
deep learning detection, large model-based detection methods,
and biometric detection. Through analysis of extensive research
literature, this paper focuses on the technical characteristics,
application scenarios, and performance of various detection
methods. Meanwhile, we also conduct an in-depth discussion
of challenges facing current detection technologies, including
adversarial sample problems, limitations of large model detection,
and future research directions. This survey aims to provide
researchers with a comprehensive technical reference framework
to promote further development of deepfake detection technology.

Index Terms—Forgery Detection, Deep Learning, Large Lan-
guage Models, Multimodal Models, Computer Vision

I. INTRODUCTION

A. Research Background and Significance

The emergence and rapid development of deepfake technol-
ogy represent a fundamental transformation in digital media
creation and dissemination paradigms. This technology lever-
ages sophisticated deep learning algorithms to generate syn-
thetic images, videos, and audio content with unprecedented
levels of realism, effectively obscuring traditional distinctions
between authentic and fabricated media. The technological
landscape has evolved significantly in recent years, with
substantial advancements in Generative Adversarial Networks
(GANs), diffusion models, and the deployment of large-scale
pre-trained architectures. These developments have systemati-
cally reduced the technical barriers to entry for deepfake con-
tent generation while simultaneously expanding the potential
application domains for such synthetic media [1]. The democ-
ratization of these powerful generative capabilities raises pro-
found questions regarding media authenticity in contemporary
digital ecosystems, as the technical sophistication required for

creating convincing synthetic content continues to diminish
while output quality consistently improves. Despite poten-
tial beneficial applications in creative industries, educational
contexts, and specialized fields, the proliferation of deepfake
technology has introduced substantial security vulnerabilities
with far-reaching societal implications. The technology facili-
tates increasingly sophisticated forms of identity theft, enables
the rapid dissemination of misinformation through fabricated
evidence, and creates new vectors for financial fraud and
other malicious activities [2]. Given these emerging threats,
the development of robust deepfake detection methodolo-
gies constitutes a research priority with significant practical
implications. Such detection frameworks serve not merely
as technical countermeasures but as essential safeguards for
individual privacy rights, institutional integrity, and broader
social cohesion. The ability to reliably authenticate digital
media has become a foundational requirement for maintaining
trust in information systems, preserving evidence standards
in judicial proceedings, protecting intellectual property rights,
and ensuring the reliability of public discourse in increasingly
digitalized societies.

B. Overview of Deepfake Technology Development

The developmental trajectory of deepfake technology can
be traced back to 2014, when deep learning-based image
generation technology began to demonstrate its formidable
potential. During this period, as deep learning algorithms
were refined and computational capabilities enhanced, this
technological domain entered an initial exploratory phase
wherein researchers commenced experimenting with neural
networks for image synthesis and processing tasks. Although
the technology remained relatively immature during this time-
frame, it established the theoretical and technical foundations
for subsequent rapid advancements [3]. The year 2017 marked
a significant inflection point in deepfake technology devel-
opment, as the first publicly accessible deepfake application
generated widespread attention across social media platforms.
This event not only introduced the concept of deepfakes into
public consciousness but also catalyzed a research surge in the
field, propelling the associated technologies into an accelerated
development phase. Both academic and industrial sectors
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exhibited substantial interest in this emerging technology,
allocating considerable resources towards research and devel-
opment initiatives [3]. Technological breakthroughs during this
phase primarily centered on fundamental functionalities such
as facial expression and identity substitution; despite limited
generative quality, these early implementations demonstrated
the disruptive potential of deep learning in media synthesis.
In recent years, concurrent with significant advancements in
computer vision and deep learning technologies, deepfake
generation methodologies have undergone continuous inno-
vation and iteration. The technological approach has evolved
from early Generative Adversarial Network (GAN)-based fa-
cial replacement to the current comprehensive technological
ecosystem encompassing multiple application scenarios. These
applications include, but are not limited to, full-body mo-
tion transfer, voice cloning, and cross-modal synthesis opera-
tions. Methodological approaches have expanded from singu-
lar GAN architectures to diversified technical pathways incor-
porating Variational Autoencoders (VAEs), Diffusion Models,
and other architectural paradigms, substantially enhancing the
quality, diversity, and verisimilitude of generated content.
Particularly noteworthy is the emergence of large-scale vision-
language models in 2023, which elevated deepfake technology
to unprecedented heights. These models, which integrate vi-
sual and linguistic capabilities, achieved not only qualitative
breakthroughs in generation fidelity but also significant ad-
vancements in content diversity, controllability, and interac-
tivity [4]. Such models can generate highly realistic images
and video content based on textual descriptions, substantially
reducing the technical barriers to deepfake utilization while
expanding potential application domains. The increased model
parameter scale and expanded training datasets have signifi-
cantly enhanced the detail representation and semantic com-
prehension capabilities of generated content, further blurring
the demarcation between authentic and synthesized media.
This technological progression not only reflects the rapid de-
velopment of artificial intelligence in media content generation
but also precipitates profound societal deliberation regarding
content authenticity, privacy protection, and information secu-
rity. The developmental history of deepfake technology illus-
trates the transformative impact of deep learning on audiovi-
sual media, while simultaneously underscoring the imperative
to establish equilibrium between technological innovation and
ethical regulation [4].

C. Social Security Challenges

The social security challenges brought by deepfake tech-
nology are mainly manifested in the following aspects: First,
personal privacy and rights are violated, as unauthorized
personal images and videos may be used to create fake content;
second, the public information environment is polluted, with
the speed and scope of fake news and false information
transmission greatly enhanced; third, financial security risks
arise, as deepfake technology may be used to commit fraud
and financial crimes; finally, political security threats emerge
through the creation of fake political figure statements to

influence public opinion [5]. The existence of these challenges
makes the development of reliable deepfake detection technol-
ogy extremely urgent.

II. BASIC PRINCIPLES AND CLASSIFICATION OF
DEEPFAKES

A. Generative Adversarial Networks (GANs) Basics

As the core foundation of deepfake technology, Genera-
tive Adversarial Networks operate based on the adversarial
learning process between generators and discriminators. The
generator is responsible for creating fake content, while the
discriminator attempts to distinguish between real and fake
content, with both continuously optimizing through the adver-
sarial process [6]. Mathematically, the objective function of
GANs can be expressed as:

minG maxD V (D,G) = Ex ∼ pdata(x)[logD(x)]
+Ez∼pz(z)[log(1−D(G(z)))]

(1)

where GG G represents the generator, DD D represents the
discriminator, xx x is the real data sample, and zz z is the ran-
dom noise input. This game process eventually reaches Nash
equilibrium, making the generated content highly realistic. In
recent years, variants such as conditional GANs and cycle
GANs have further improved the quality and controllability of
generated content [7].

B. Major Types of Deepfake Technology

Fig. 1. Major Types of Deepfake Technology

As shown in Figure 1, current mainstream deepfake tech-
nologies can be divided into four major categories: face
swapping, expression transfer, full-body motion transfer, and
voice cloning. Face swapping technology mainly works by
extracting facial features and identity information, transferring
the features of the source face to the target video [8]. Expres-
sion transfer technology focuses on capturing and transferring
facial expression movements while keeping identity features
unchanged. Full-body motion transfer technology analyzes
human posture and motion sequences to achieve precise
mimicry of movements. Voice cloning technology analyzes
the speaker’s voice characteristics to generate synthetic speech
with the same vocal print features [9].

C. Large Model Generation Technology

Large language models and vision-language models have
brought revolutionary changes to the deepfake field. These
models acquire powerful generation capabilities through pre-
training on massive data and can understand and execute com-
plex generation instructions. Typical large model generation
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Fig. 2. Typical Large Model Generation Architecture

architectures as shown in figure 2: The advantage of large
model generation technology lies in its powerful cross-modal
understanding and generation capabilities, able to generate
high-quality images, videos, and audio content based on text
descriptions. At the same time, these models often have better
controllability and diversity [10].

D. Analysis of Typical Application Scenarios

The following table I summarizes the application character-
istics of deepfake technology in different scenarios: Deepfake
technology shows different characteristics and risk levels in
different application scenarios. In the entertainment creation
field, the technology is mainly used for content innovation
and artistic expression; in news dissemination, it may be used
to create false information; in commercial marketing, it is
primarily used for advertising creativity and brand promotion;
while in privacy violation scenarios, it often involves the
comprehensive use of multiple technologies [11]. This diver-
sified application scenario also brings enormous challenges to
detection technology.

III. TRADITIONAL DETECTION METHODS

A. Physical Feature Detection

Traditional physical feature detection methods mainly rely
on abnormal features exhibited by deepfake content at the
physical level. These methods identify fake content by ana-
lyzing physical features such as lighting consistency, shadow
distribution, and reflection characteristics in images or videos.
Research shows that early deepfake content often has obvious
defects in these physical features [12]. For example, by analyz-
ing the light distribution in the face area, abnormal phenomena
that do not conform to natural lighting laws can often be found
in fake content. The mathematical model of physical feature
detection can be represented as:

I(x, y) = R(x, y) · L(x, y) (2)

where:
• I(x,y)I(x,y) represents image brightness
• R(x,y)R(x,y) represents surface reflectance
• L(x,y)L(x,y) represents incident light intensity

B. Digital Feature Detection

Digital feature detection focuses on analyzing features of
images or videos at the digital signal level. This method mainly
includes noise analysis, compression artifact detection, color
distribution analysis, and other technical means [13]. Figure
3 below shows a typical digital feature analysis process: In
digital feature analysis, fake content usually exhibits specific

Fig. 3. Typical Digital Feature Analysis Proces

statistical features and abnormal patterns. For example, images
generated by deepfakes often show different energy distribu-
tion characteristics in the frequency domain compared to real
images.

C. Traditional Machine Learning Methods

The application of traditional machine learning methods in
deepfake detection is mainly based on feature engineering
and statistical learning principles. The following table II
summarizes common traditional machine learning methods
and their characteristics: The advantage of traditional machine
learning methods lies in their good interpretability and lower
computational resource requirements [14]. These methods typ-
ically use manually designed feature extractors combined with
classical classification or clustering algorithms for detection.
The feature extraction process can be represented as:

F = T (I) (3)

where:
• F represents the extracted feature vector
• T represents the feature transformation function
• I represents the input image
Although these traditional detection methods have advan-

tages in computational efficiency and interpretability, they
show obvious limitations when facing modern deepfake tech-
nology. First, physical feature detection methods struggle with
fake content using advanced rendering techniques. Second,
digital feature detection is easily affected by post-processing
techniques. Finally, traditional machine learning methods per-
form poorly when handling high-dimensional features and
complex patterns [15]. Therefore, these methods usually need
to be combined with modern deep learning technologies to
achieve better detection results.

IV. DEEP LEARNING-BASED DETECTION TECHNOLOGY

A. CNN Basic Models

Convolutional Neural Networks (CNNs) as the basic archi-
tecture of deep learning detection technology play a key role
in deepfake detection. Modern CNN detection models typi-
cally adopt multi-layer convolutional structures, automatically
learning feature hierarchies to capture visual features of fake
content [16]. A typical CNN detection architecture contains
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TABLE I
APPLICATION CHARACTERISTICS OF DEEPFAKE TECHNOLOGY IN DIFFERENT SCENARIOS

Scenario Main Technology Typical Features Potential Risk Detection Difficulty
Entertainment Creation Face Swapping/Motion Transfer Obvious Artistic Processing Low Medium

Fake News Face Swapping/Voice Cloning High Realism Extremely High Difficult
Commercial Marketing Full-body Motion Transfer Commercial Packaging Medium Relatively Easy

Personal Privacy Violation Multiple Technology Integration Strong Concealment Extremely High Extremely Difficult

TABLE II
TRADITIONAL MACHINE LEARNING METHODS AND THEIR CHARACTERISTICS

Method Type Main Features Detection Accuracy Computational Complexity Applicable Scenarios
SVM High-dimensional Feature Classification 75-85% Medium Small Datasets

Random Forest Ensemble Decision Trees 70-80% Low High Feature Dimensions
DBSCAN Density Clustering 65-75% High Unsupervised Scenarios
AdaBoost Weak Classifier Ensemble 73-83% Medium Binary Classification Problems

two main stages: feature extraction and classification, which
can be mathematically expressed as:

fl = σ(Wl ∗ fl−1 + bl) (4)

where:
• f l represents the feature map of layer l
• W l represents convolutional kernel weights
• b l represents the bias term
• σ represents the activation function
As shown in figure 4 the architectural design of CNN

detection models is as follows:

Fig. 4. Architecture of CNN Detection Model

B. Attention Mechanism Models

The introduction of attention mechanisms has significantly
improved the performance of deepfake detection. These mod-
els can adaptively focus on key areas in images, especially
local features where forgery traces are likely to appear [17].
The calculation of attention weights can be represented as:

αij = softmax(Qi ·KT
j /

√
d) (5)

where:
• α ij represents attention weights
• Q i represents the query vector
• K j represents the key vector
• d represents the feature dimension

C. Temporal Feature Analysis

In video deepfake detection, temporal feature analysis plays
an important role. These methods identify fake content by
analyzing temporal consistency and motion coherence in video
frame sequences [18]. The following table III summarizes the
main temporal feature analysis methods:

D. Multimodal Fusion Detection

Multimodal fusion detection provides more comprehensive
detection capabilities by integrating visual, audio, and seman-
tic information from multiple modalities [19]. The typical
architecture of this method is as follows figure 5: These

Fig. 5. Temporal Feature Analysis Method

deep learning detection methods have significant advantages
compared to traditional methods. First, they can automati-
cally learn effective feature representations without relying on
manually designed feature extractors. Second, deep models
have stronger generalization capabilities and can adapt to
various types of deepfake content. Finally, through multimodal
fusion and temporal analysis, these methods can capture more
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TABLE III
MAIN TEMPORAL FEATURE ANALYSIS METHOD

Analysis Method Main Features Detection Accuracy Time Overhead Applicable Scenarios
3D-CNN Spatiotemporal Convolution 88-92% High Short Video Clips
LSTM Long-term Dependencies 85-90% Medium Long Sequence Analysis
TCN Causal Convolution 86-91% Low Real-time Detection
GRU Gating Mechanism 84-89% Medium Resource-constrained

complex forgery features [20]. However, these methods also
face some challenges, such as high computational resource
requirements and sensitivity to adversarial samples, which will
be discussed in detail in subsequent sections.

V. LARGE MODEL-BASED DETECTION METHODS

A. Vision Large Model Detection

Vision large models, with their powerful feature extraction
and understanding capabilities, show unique advantages in
the field of deepfake detection. These models typically adopt
large-scale pre-training and multi-task learning paradigms,
capable of capturing deeper visual semantic features [21]. The
detection process of vision large models mainly includes key
steps such as feature extraction, attention computation, and
multi-level feature fusion. In practice, these models usually
adopt hierarchical designs, building representations from low-
level pixel features to high-level semantic features. The trans-
fer learning process of pre-trained vision large models can be
represented as:

Ft = M(Fs, θt) (6)

where:
• F t represents target task features
• F s represents source domain features
• θ t represents transfer parameters
• M represents the transfer mapping function

B. Multimodal Large Model Detection

Multimodal large models provide more comprehensive de-
tection capabilities by integrating information from multiple
modalities such as vision, speech, and text [22]. The architec-
tural design of these models is as follows figure 6:

Fig. 6. Architectural Design of Multimodal Models

C. Large Model Knowledge Transfer

Large model knowledge transfer is an efficient method to
utilize pre-trained model knowledge. By designing appropriate
transfer strategies, knowledge learned by large models on
massive data can be effectively applied to deepfake detection
tasks [23]. The following table IV compares the characteristics
of different knowledge transfer strategies:

D. Prompt Learning Detection Methods

Prompt learning, as an emerging detection paradigm, guides
large models in deepfake detection by designing specific
prompt templates [24]. The advantage of this method lies in its
ability to fully utilize the semantic understanding capabilities
of large models while also having good interpretability. As
shown in figure 7 The basic framework of prompt learning
includes: The effectiveness of prompt learning largely de-

Fig. 7. Basic Framework of Prompt Learning

pends on the quality of prompt template design. An effective
prompt template needs to consider several key elements: task
relevance, semantic clarity, and guidance. Through carefully
designed prompts, detection performance can be significantly
improved. While large model-based detection methods have
powerful feature extraction and understanding capabilities,
they also face some challenges [25]. First is the high compu-
tational resource requirement, making model deployment and
real-time detection difficult. Second is the high requirement
for data quality and quantity, needing large amounts of high-
quality training samples. Finally, there is the issue of model
interpretability, as the decision processes of large models are
often difficult to explain and verify.

VI. BIOMETRIC DETECTION METHODS

A. Facial Expression Analysis

Facial expression analysis is an important research direction
in deepfake detection, mainly focusing on the naturalness
and consistency of facial expression changes. Research shows
that even the most advanced deepfake technology struggles to
perfectly simulate the subtle changes of human facial micro-
expressions [26]. Facial expression analysis mainly includes
expression dynamic analysis, muscle movement consistency
verification, and expression semantic understanding at multiple
levels. In specific implementations, by extracting the motion
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TABLE IV
COMPARES THE CHARACTERISTICS OF DIFFERENT KNOWLEDGE TRANSFER STRATEGIES

Transfer Strategy Knowledge Type Transfer Efficiency Computational Overhead Application Scenarios
Feature Distillation Intermediate Layer Features High Medium Lightweight Deployment

Task Adaptation Task-related Knowledge High High Domain Transfer
Progressive Learning Multi-level Knowledge Medium Low Incremental Learning
Contrastive Learning Discriminative Knowledge High High Few-shot Scenarios

trajectories of facial key points and analyzing the spatiotem-
poral features of expression changes, unnatural expression
change patterns can be effectively identified. The mathematical
expression of facial expression features can be described by
the following formula:

E(t) = F (P (t),M(t), S(t)) (7)

where:
• E(t) represents expression features at time t
• P(t) represents facial key point positions
• M(t) represents muscle movement parameters
• S(t) represents expression semantic features

B. Eye Blink Frequency Detection

Eye blink frequency detection stands out as an efficient and
highly reliable biometric detection method, widely adopted
across various fields to differentiate genuine human behavior
from manipulated or synthetically generated content. The
natural blinking of humans is characterized by specific fre-
quency ranges and consistent patterns of regularity, serving as
distinctive traits that can effectively expose inconsistencies or
anomalies, particularly in deepfake videos [27]. As depicted
in the provided Figure 8, the system architecture for eye
blink detection is meticulously designed and operates through
a well-organized sequence of steps. This process starts with
the ingestion of video input and systematically progresses
through multiple analytical stages—each playing a critical role
in achieving a precise and accurate detection outcome. The
methodology leverages advanced computational techniques
to scrutinize the temporal and spatial characteristics of eye
movements, making it a powerful tool in applications such
as security authentication, authenticity assessment of video
content, and AI-driven surveillance systems. By capitalizing
on the natural rhythm and pattern of human blinking, this
approach enables the identification of potential forgeries or
irregularities with remarkable accuracy and efficiency.

C. Speech Synchronization Analysis

Speech synchronization analysis focuses on detecting
whether the lip movements and speech of characters in videos
are synchronized, which is an important indicator for identify-
ing deepfake content [28]. The following table V summarizes
the main speech synchronization analysis methods:

D. Multimodal Biometric Feature Fusion

Multimodal biometric feature fusion builds more robust
detection systems by integrating multiple biometric features
[29]. This method not only improves detection accuracy but

Fig. 8. System Architecture of Eye Blink Detection

also enhances the system’s adaptability to different types of
fake content. The feature fusion process can be represented
as:

D = W1 · F1 +W2 · F2 + . . .+Wn · Fn (8)

where:
• D represents the fusion decision result
• W i represents the weight of the i feature
• F i represents the i biometric feature
A significant advantage of biometric detection methods is

their strong interpretability and reliability. These methods,
based on human physiological features, can effectively capture
unnatural phenomena in deepfake content. However, these
methods also have some limitations [30]. First, they usually
require high-quality input data, with high requirements for
video resolution and acquisition conditions. Second, some
biometric feature detection methods have high computational
complexity, which may affect real-time detection performance.
Finally, with the advancement of deepfake technology, some
traditional biometric detection methods may face the risk of
failure.

VII. DETECTION TECHNOLOGY EVALUATION AND
COMPARISON

A. Evaluation Datasets

The evaluation of deepfake detection technology needs to
rely on high-quality, diverse datasets. Existing mainstream
evaluation datasets can be divided into several main categories:
benchmark datasets, real-world scenario datasets, and specific
task datasets [31]. These datasets have their own character-
istics in terms of scale, diversity, and difficulty, providing a
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TABLE V
MAIN SPEECH SYNCHRONIZATION ANALYSIS METHODS

Analysis Method Detection Features Accuracy Real-time Performance Applicable Scenarios
Lip Tracking Lip Contour Movement 87-92% Good Frontal Face Videos

Phoneme Alignment Speech-Lip Shape Matching 85-90% Medium Clear Dialogue Scenes
Multimodal Mutual Information Cross-modal Consistency 89-94% Poor High-quality Videos

Temporal Correlation Temporal Synchronization 86-91% Good Real-time Detection

comprehensive testing environment for the evaluation of de-
tection technology. Currently widely used evaluation datasets
mainly include FaceForensics++, DeepFake Detection Chal-
lenge Dataset (DFDC), Celeb-DF, and WildDeepfake. Each
dataset has its unique characteristics and applicable scenarios.
For example, FaceForensics++ contains videos generated by
various forgery methods, suitable for evaluating the general-
ization ability of detection algorithms; while DFDC focuses
more on real application scenarios, containing samples under
various environmental conditions.

B. Performance Indicator Analysis

The performance evaluation of deepfake detection technol-
ogy needs to consider indicators across multiple dimensions
[32]. The main evaluation indicators include traditional indica-
tors such as accuracy, precision, recall, F1 score, etc., as well
as specialized indicators specific to deepfake detection. The
following table VII-B summarizes key performance indicators
and their characteristics:

C. Comparison of Advantages and Disadvantages of Various
Methods

Different detection methods show different characteristics
in various aspects [33]. Traditional methods have high com-
putational efficiency but lower accuracy, deep learning meth-
ods have high accuracy but large computational resource
requirements, while biometric feature-based methods perform
excellently in specific scenarios. To comprehensively evaluate
the performance of various methods, we propose the following
multi-dimensional comparison framework as figure 9:

Fig. 9. Multi-dimensional Comparison Framework

D. Comparison of Large Model Methods and Traditional
Methods

Large model methods and traditional detection methods
have significant differences in multiple aspects [34]. Large
model methods usually exhibit stronger feature extraction
capabilities and better generalization performance, but also

face problems such as high computational resource require-
ments and high deployment costs. In practical applications,
appropriate detection methods need to be selected based on
specific scenario requirements.
Compared to traditional methods, large model-based detec-
tion methods have several main advantages: First, they can
automatically learn complex feature representations, reducing
the need for manual feature engineering; second, they have
stronger cross-domain generalization capabilities, able to adapt
to different types of deepfake content; finally, they can better
handle multimodal data, providing more comprehensive detec-
tion results. However, these advantages are also accompanied
by higher computational costs and more complex deployment
requirements.
These evaluation results provide important reference basis
for us to better understand the characteristics and applicable
scenarios of different detection methods [35]. By comprehen-
sively considering various evaluation indicators and practical
application requirements, we can select the most suitable
detection method for specific scenarios.

VIII. CHALLENGES AND PROSPECTS

A. Limitations of Existing Technologies

Despite significant progress in current deepfake detection
technology, it still faces many technical limitations. First,
most detection methods show obvious limitations when fac-
ing high-quality fake content, especially when encountering
deepfake content made using the latest generation technology,
detection accuracy significantly decreases [36]. Second, the
generalization ability of existing detection methods still needs
improvement, often performing poorly when dealing with
unseen forgery types. Additionally, real-time detection remains
an important challenge, especially on resource-constrained
mobile devices. These limitations can be analyzed from several
dimensions: First are technical-level limitations, including
insufficient feature extraction capabilities, excessive computa-
tional resource requirements, and trade-offs between detection
speed and accuracy. Second are data-level limitations, includ-
ing insufficient representativeness of training data and inability
of datasets to keep pace with the development of forgery
technology. Finally, there are application-level limitations,
including high deployment costs and maintenance difficulties.

B. Adversarial Sample Issues

Adversarial samples pose a severe challenge to deepfake
detection [37]. By adding carefully designed perturbations,
attackers can cause detection systems to make incorrect
judgments. Adversarial samples typically have the following
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Performance Indicator Calculation Method Applicable Scenarios Advantages Limitations
Accuracy (TP+TN)/(TP+TN+FP+FN) Overall Performance Evaluation Intuitive and Easy Understand Sensitive Class Imbalance

AUC-ROC Area Under ROC Curve Binary Classification Evaluation Assessment Capability Computationally Complex
EER Equal Error Rate Point Threshold Selection Balanced Performance Single Operating Point

Detection Latency Average Processing Time Real-time Systems Strong Practicality Hardware Dependent

characteristics in figure 10: To improve the robustness of de-

Fig. 10. Characteristics of Adversarial Samples

tection systems against adversarial samples, researchers have
proposed various defense strategies. These strategies include
adversarial training, ensemble learning, randomization pro-
cessing, and other methods. However, these defense methods
often increase system complexity and computational overhead,
while potentially reducing the performance of detection sys-
tems on normal samples.

C. Challenges of Large Model Detection

While large models show enormous potential in deepfake
detection, they also face unique challenges [38]. First is the
computational resource requirement, as the deployment and
operation of large models need powerful hardware support.
Second is the model update issue, as large models need regular
updates to maintain detection effectiveness with the rapid
development of forgery technology. Additionally, the black-
box nature of large models also brings challenges to inter-
pretability and credibility. The following table summarizes
the main challenges faced by large model detection and their
potential solutions:

D. Future Research Directions

Looking ahead, the development directions of deepfake de-
tection technology mainly focus on the following aspects [39]:
First is improving the generalization ability and robustness of
detection systems to cope with various new forgery technolo-
gies. Second is developing lightweight detection models to
lower deployment thresholds and operational costs. Finally,
enhancing the interpretability and credibility of detection sys-
tems to improve the reliability of detection results.
Specifically, future research focuses may include: developing
more efficient feature extraction methods, designing more
powerful multimodal fusion strategies, exploring adaptive
learning mechanisms, and researching new defense technolo-
gies. At the same time, with the development of emerging
technologies such as quantum computing, deepfake detection

technology may also see new breakthroughs [40].
These research directions require not only technological inno-
vation but also consideration of practical application scenario
needs. Only by combining technological progress with practi-
cal needs can we promote the healthy development of deepfake
detection technology.

IX. CONCLUSION

The development of deepfake detection technology is of
great significance for maintaining information security and
social order in digital society. Through this systematic review,
we can clearly see the research status, technological progress,
and future directions in this field.
From the perspective of technological evolution, deepfake
detection technology has undergone a development process
from traditional machine learning methods to deep learning
methods, and then to large model-based detection methods.
This evolution process reflects the continuously improving
identification capabilities and adaptability of detection tech-
nology. Especially in recent years, with the emergence of
large-scale pre-trained models, detection technology has made
significant progress in feature extraction capability and gener-
alization performance.
In multi-dimensional performance evaluation, we find that
different detection methods have their own characteristics.
Traditional detection methods, although computationally ef-
ficient, often perform poorly when facing new types of fake
content. Deep learning methods provide better detection per-
formance but also bring higher computational overhead. Large
model-based detection methods demonstrate powerful feature
understanding capabilities but face challenges of resource
requirements and maintenance costs during actual deploy-
ment. Biometric detection methods show unique advantages in
specific scenarios, providing useful supplements for practical
applications.
Currently, deepfake detection technology still faces several
key challenges. First is the generalization ability of detection
systems, which need to effectively respond to various new
forgery technologies. Second is the adversarial sample defense
problem, which directly relates to the reliability of detection
systems. Additionally, how to balance detection performance
with resource overhead, and how to improve the interpretabil-
ity of detection results, are all research directions that need
attention.
Looking to the future, the development trends of deepfake
detection technology will mainly focus on the following
aspects: First is enhancing detection performance through
technological innovation, including developing more efficient
feature extraction methods and more powerful multimodal
fusion strategies; second is optimizing model architecture
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Challenge Type Specific Manifestation Impact Level Possible Solutions Implementation Difficulty
Computational Overhead Slow Inference Speed High Model Compression, Quantization Medium

Update Maintenance Poor Adaptability Medium Incremental Learning, Transfer Learning High
Interpretability Opaque Decision-making High Attention Visualization, Feature Explanation High

Robustness Weak Generalization Ability Medium Data Augmentation, Ensemble Learning Medium

and algorithm design to reduce deployment and operational
costs; third is strengthening research on detection system inter-
pretability to improve the credibility of detection results; fourth
is exploring the application potential of new technologies in
deepfake detection.
Based on the analysis in this review, we believe that future
deepfake detection research should pay more attention to prac-
tical application needs, considering deployment costs, mainte-
nance difficulties, and other practical issues while improving
technical performance. At the same time, the development of
detection technology also needs to coordinate with relevant
laws, regulations, and ethical norms to jointly build a healthy
digital society ecosystem.
Finally, the researcher hopes this review can provide valuable
references for relevant researchers, promote the further devel-
opment of deepfake detection technology, and make positive
contributions to maintaining the authenticity and credibility of
the digital world.
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